Самообучение в data science, с нуля до senior за два года

Самые популярные вопросы

Если никогда не занимался аналитикой, получится ли освоить Data scientist?

Если у новичка развито аналитическое мышление, то при правильном подходе к обучению можно достигнуть хорошего уровня. Достаточно своевременно выполнять задания, общаться с куратором и самостоятельно расширять кругозор.

Можно ли совмещать обучение с основной работой?

Каждый студент проходит обучение в своем темпе. Все уроки доступны после окончания поддержки куратора еще некоторое время. Всегда можно вернуться к теме и повторить пройденный материал.

Как можно найти работу по специальности после получения диплома?

Уже во время обучения каждый студент выполняет реальные задачи и наполняет портфолио. После окончания обучения будет доступен раздел с рекомендациями по поиску проектов.

Как искать вакансии?

На самом деле в вакансии пишут, что требуются IT-аналитики, специалисты по анализу. Только при собеседовании будет понятно, какой именно специалист требуется работодателю.

Кто такой Data Scientist и чем занимается?

Данные — основной объект исследования в Big Data. Вопреки стереотипам, аналитики Data Scientist работают не только в крупных компаниях. В молодой индустрии Big Data инженеры, математики, программисты и трейдеры создают визуальные модели, формируют бизнес-сценарии и тестируют их. Прогнозы экспертов интересны широкому кругу лиц — компаниям, частным предпринимателям, государственным учреждениям. Анализ Big Data — это не только статистические обзоры, но и предвидение будущих событий, вероятность которых можно вывести с математической точностью. Курс Data Scientist от Skillbox отличается насыщенной программой. Слушателей знакомят с нейронными сетями, инфографикой, работой в библиотеках.

Как решать проблему несовпадения ожиданий?

Алексей Натекин в своем докладе «Чем отличаются data analyst, data engineer и data scientist» нарисовал картинку с распределением Дирихле, то есть с вероятностью вероятностей.

 Предположим, что в Data Science существуют три основные компетенции:

  1. Математика. Теоретические знания алгоритмов машинного обучения, и математическая статистика для проверки разных статистических гипотез и обработки результатов, а также любые другие фундаментальные знания, которые будут важны в вашей предметной области.

  2. Разработка. Всё, что связано с разработкой, инженерными составляющими проекта, DevOps, SysOps, SRE, и прочее.

  3. Предметная область. Навыки коммуникации с коллегами и бизнесом, чтобы понимать, какую проблему они хотят решить, на какие вопросы ответить.

И Data Scientist в этой парадигме — это некоторое наблюдение из нашего распределения Дирихле. Но с помощью этого распределения можно ввести несколько новых должностей, которые будут давать более ясное представление о вашей потенциальной деятельности. Рассмотрим несколько из них.

Если вы ищете работу на позицию Machine Learning Engineer, то, скорее всего, будете заниматься введением в эксплуатацию моделей машинного обучения и поддерживать их в актуальном состоянии. Для этого вам потребуются навыки и знания в области алгоритмов машинного обучения, ну и, конечно, разработки.

Если вы аналитик данных, то, вероятно, вы будете заниматься проверкой статистических гипотез, проектировать и проводить эксперименты. Для этого вам требуются фундаментальные знания математической статистики, а также необходимо держать руку на пульсе бизнеса. 

Дата-инженер — это человек, который занимается ETL-процессами, архитектурой хранилища, составляет витрины и поддерживает их, организовывает потоковую обработку данных.

Machine Learning Researcher занимается исследовательской работой. Пишет и изучает статьи, придумывает новые математические методы. Таких позиций в России довольно мало, да и встречаются они, как правило, в крупных компаниях, которые могут себе это позволить.

Аналитик — это человек, который отвечает на вопросы бизнеса, и его плотность вероятности приходится на предметную область.

Наконец, DevOps максимально сосредоточен на разработке и развёртывании вашего кода в продакшене.

Дата-сайентисты в облаках

Облегчить и ускорить работу по сбору данных, построению и развертыванию моделей помогают специальные облачные платформы. Именно облачные платформы для машинного обучения стали самым актуальным трендом в Data Science. Поскольку речь идет о больших объемах информации, сложных ML-моделях, о готовых и доступных для работы распределенных команд инструментах, то дата-сайентистами понадобились гибкие, масштабируемые и доступные ресурсы.

Именно для дата-сайентистов облачные провайдеры создали платформы, ориентированные на подготовку и запуск моделей машинного обучения и дальнейшую работу с ними. Пока таких решений немного и одно из них было полностью создано в России. В конце 2020 года компания Sbercloud представила облачную платформу полного цикла разработки и реализации AI-сервисов — ML Space. Платформа содержит набор инструментов и ресурсов для создания, обучения и развертывания моделей машинного обучения — от быстрого подключения к источникам данных до автоматического развертывания обученных моделей на динамически масштабируемых облачных ресурсах SberCloud.

Футурология

«Я бы вакцинировал троих на миллион». Интервью с нейросетью GPT-3

Сейчас ML Space — единственный в мире облачный сервис, позволяющий организовать распределенное обучение на 1000+ GPU. Эту возможность обеспечивает собственный облачный суперкомпьютер SberCloud — «Кристофари». Запущенный в 2019 году «Кристофари» является сейчас самым мощным российским вычислительным кластером и занимает 40 место в мировом рейтинге cуперкомпьютеров TOP500

Платформу уже используют команды разработчиков экосистемы Сбера. Именно с ее помощью было запущено семейство виртуальных ассистентов «Салют». Для их создания с помощью «Кристофари» и ML Space было обучено более 70 различных ASR- моделей (автоматическое распознавание речи) и большое количество моделей Text-to-Speech. Сейчас ML Space доступна для любых коммерческих пользователи, учебных и научных организаций.

«ML Space ­– это настоящий технологический прорыв в области работы с искусственным интеллектом. По нескольким ключевым параметрам ML Space уже превосходит лучшие мировые решения. Я считаю, что сегодня ML Space одна из лучших в мире облачных платформ для машинного обучения. Опытным дата-сайентистам она предоставляет новые удобные инструменты, возможность распределенной работы, автоматизации создания, обучения и внедрения ИИ-моделей. Компаниям и организациям, не имеющим глубокой ML-экспертизы, ML Space дает возможность впервые использовать искусственный интеллект в своих продуктах, приложениях и рабочих процессах», — уверен Отари Меликишвили, лидер продуктового вправления AI Cloud, компании SberCloud.

Облака помогают рынку все шире использовать платформы для работы с данными, предлагая безграничные вычислительные мощности, подтверждают аналитики Mordor Intelligence.

По мнению экспертов из Anaconda, потребуется время, чтобы бизнес и сами специалисты созрели для широкого использования инструментов DS и смогли получить результаты. Но прогресс уже очевиден. «Мы ожидаем, что в ближайшие два-три года Data Science продолжит двигаться к тому, чтобы стать стратегической функцией бизнеса во многих отраслях», — прогнозирует компания.

Чем отличается аналитик Big Data от исследователя данных

На первый взгляд может показаться, что Data Scientist ничем не отличается от Data Analyst, ведь их рабочие обязанности и профессиональные компетенции частично пересекаются. Однако, это не совсем взаимозаменяемые специальности. При значительном сходстве, отличия между ними также весьма существенные:

  • по инструментарию – аналитик чаще всего работает с ETL-хранилищами и витринами данных, тогда как исследователь взаимодействует с Big Data системами хранения и обработки информации (стек Apache Hadoop, NoSQL-базы данных и т.д.), а также статистическими пакетами (R-studio, Matlab и пр.);
  • по методам исследований – Data Analyst чаще использует методы системного анализа и бизнес-аналитики, тогда как Data Scientist, в основном, работает с математическими средствами Computer Science (модели и алгоритмы машинного обучения, а также другие разделы искусственного интеллекта);
  • по зарплате – на рынке труда Data Scientist стоит чуть выше, чем Data Analyst (100-200 т.р. против 80-150 т.р., по данным рекрутингового портала HeadHunter в августе 2019 г.). Возможно, это связано с более высоким порогом входа в профессию: исследователь по данным обладает навыками программирования, тогда как Data Analyst, в основном, работает с уже готовыми SQL/ETL-средствами.

На практике в некоторых компаниях всю работу по данным, включая бизнес-аналитику и построение моделей Machine Learning выполняет один и тот же человек. Однако, в связи с популярностью T-модели компетенций ИТ-специалиста, при наличии широкого круга профессиональных знаний и умений предполагается экспертная концентрация в узкой предметной области. Поэтому сегодня все больше компаний стремятся разделять обязанности Data Analyst и Data Scientist, а также инженера по данным (Data Engineer) и администратора Big Data, о чем мы расскажем в следующих статьях.

Data Scientist – одна из самых востребованных профессий на современном ИТ-рынке

В области Big Data ученому по данным пригодятся практические знания по облачным вычислениям и инструментам машинного обучения. Эти и другие вопросы по исследованию данных мы рассматриваем на наших курсах обучения и повышения квалификации ИТ-специалистов в лицензированном учебном центре для руководителей, аналитиков, архитекторов, инженеров и исследователей Big Data в Москве:

  • PYML: Машинное обучение на Python
  • DPREP: Подготовка данных для Data Mining
  • DSML: Машинное обучение в R
  • DSAV: Анализ данных и визуализация в R
  • AZURE: Машинное обучение на Microsoft Azure

Смотреть расписание
Записаться на курс

Как Data Scientist увеличить свою стоимость на рынке труда

  • Знание уникальной технологии. Когда специалист становится экспертом в узкой профессиональной области, например он крут в NLP — это увеличивает его стоимость на рынке.
  • Опыт работы в развитой, хайповой сфере: всё что связано с компьютерным зрением, робототехникой, беспилотниками и так далее. Стоимость специалиста зависит от пересечения спроса рынка, общих трендов и знаний специфического, узкого сегмента.
  • Разносторонний опыт. Некоторые работодатели рассматривают специалистов только из своей сферы, например, из банков. Но выигрывают те, кто смотрят шире и приглашают аналитиков из других областей. Потому что кандидат может привнести новое видение, применить неочевидные инструменты и подходы.
  • Опыт создания собственного стартапа. Для работодателя это значит, что специалист может понимать поставленные задачи на уровне бизнеса.
  • Участие в международных проектах. Можно получить грант или поучаствовать в конкурсе на Kaggle.
  • Опыт работы в зарубежных компаниях. В иностранных компаниях приняты другие стандарты и подходы к бизнесу, и это ценится в российских компаниях.

Постоянно обучаться и точечно развивать свою экспертизу

Для этого важно следить за трендами рынка, чтобы прокачивать востребованные компетенции.
Уметь разговаривать на языке бизнеса. Быть проактивным, понимать и доносить пользу своей работы руководителям.
Формировать вокруг себя команду

Можно стать руководителем или тим-лидом небольшой команды либо учебного проекта. Опыт менеджерства на любом уровне востребован.

Образование в области Data Science: ничего невозможного нет

Сегодня для тех, кто хочет развиваться в сфере анализа больших данных, существует очень много возможностей: различные образовательные курсы, специализации и программы по data science на любой вкус и кошелек, найти подходящий для себя вариант не составит труда. С моими рекомендациями по курсам можно ознакомиться здесь.

Потому как Data Scientist — это человек, который знает математику. Анализ данных, технологии машинного обучения и Big Data – все эти технологии и области знаний используют базовую математику как свою основу.

Читайте по теме: 100 лучших онлайн-курсов от университетов Лиги плюща Многие считают, что математические дисциплины не особо нужны на практике. Но на самом деле это не так.

Приведу пример из нашего опыта. Мы в E-Contenta занимаемся рекомендательными системами. Программист может знать, что для решения задачи рекомендаций видео можно применить матричные разложения, знать библиотеку для любимого языка программирования, где это матричное разложение реализовано, но совершенно не понимать, как это работает и какие есть ограничения. Это приводит к тому, что метод применяется не оптимальным образом или вообще в тех местах, где он не должен применяться, снижая общее качество работы системы.

Хорошее понимание математических основ этих методов и знание их связи с реальными конкретными алгоритмами позволило бы избежать таких проблем.

Кстати, для обучения на различных профессиональных курсах и программах по Big Data зачастую требуется хорошая математическая подготовка. 

«А если я не изучал математику или изучал ее так давно, что уже ничего и не помню»? — спросите вы. «Это вовсе не повод ставить на карьере Data Scientist крест и опускать руки», — отвечу я.

Есть немало вводных курсов и инструментов для новичков, позволяющих освежить или подтянуть знания по одной из вышеперечисленных дисциплин. Например, специально для тех, кто хотел бы приобрести знания математики и алгоритмов или освежить их, мы с коллегами разработали специальный курс GoTo Course. Программа включает в себя базовый курс высшей математики, теории вероятностей, алгоритмов и структур данных — это лекции и семинары от опытных практиков

Особое внимание отведено разборам применения теории в практических задачах из реальной жизни. Курс поможет подготовиться к изучению анализа данных и машинного обучения на продвинутом уровне и решению задач на собеседованиях

15 сентября в Москве состоится конференция по большим данным Big Data Conference. В программе — бизнес-кейсы, технические решения и научные достижения лучших специалистов в этой области.

Приглашаем всех, кто заинтересован в работе с большими данными и хочет их применять в реальном бизнесе.
Следите за Big Data Conference в Telegram, на и .

Ну а если вы еще не определились, хотите ли заниматься анализом данных и хотели бы для начала оценить свои перспективы в этой профессии, попробуйте почитать специальную литературу, блоги о науке данных или посмотреть лекции. Например, рекомендую почитать хабы по темам Data Mining и Big Data на Habrahabr. Для тех, кто уже хоть немного в теме, со своей стороны порекомендую книгу «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных» Петера Флаха — это одна из немногих книг по машинному обучению на русском языке.

Заниматься Data Science так же трудно, как заниматься наукой в целом. В этой профессии нужно уметь строить гипотезы, ставить вопросы и находить ответы на них. Само слово scientist подталкивает к выводу, что такой специалист должен, прежде всего, быть исследователем, человеком с аналитическим складом ума, способный делать обоснованные выводы из огромных массивов информации в достаточно сжатые строки. Скрупулезный, внимательный, точный — чаще всего он одновременно и программист, и математик.

Достоинства и недостатки профессии

Плюсы:

  1. Профессия не просто востребованная – она ощущает острую нехватку специалистов.
  2. Высокая заработная плата.
  3. Появляется чувство удовлетворения от осознания того, что приносишь пользу для компании.
  4. Должность сопровождается постоянным профессиональным развитием.
  5. Можно работать удаленно, а значит вовсе не обязательно искать работу в своем городе.

Минусы:

  1. Профессия не из легких и не каждый сможет ее освоить.
  2. Специалист часто сталкивается с проблемой, которую не решишь традиционными и уже известными методами. Поэтому ему часто приходится разрабатывать что-то новое, чтобы достичь удовлетворительного результата.
  3. Нужно постоянно учиться, следить за новшествами и технологиями.

«Самая сексуальная профессия»

Как написал несколько лет назад журнал Harvard Business Review: «Data Scientist — самая сексуальная профессия XXI века».

В статье рассказывалось о Джонатане Голдмане, физике из Стэнфорда, который устроившись на работу в социальную сеть LinkedIn, занялся чем-то странным и непонятным. Пока команда разработчиков ломает голову над тем, как модернизировать сайт и справиться с наплывом посетителей, Голдман строит прогностическую модель, которая подсказывает владельцу аккаунта LinkedIn, кто еще из пользователей сайта может оказаться его знакомым.

С тех пор профессия Data Scientist не стала менее сексуальной, скорее наоборот. В 2016 году она возглавила кадровой компании Glassdoor. Не будем подробно останавливаться на том, почему сегодня эта профессия считается одной из самых высокооплачиваемых, привлекательных и перспективных в мире. Отметим лишь, что число вакансий в этом направлении продолжает расти по экспоненте. Согласно прогнозам McKinsey Global Institute, к 2018 году в одних только США понадобится дополнительно порядка 140-190 тысяч специалистов по работе с данными.

Неудивительно, что сегодня так много желающих  освоить эту профессию. Давайте разберемся, кто же такой Data Scientist и какими навыками и знаниями он должен обладать.

Как он это делает?

Задачи аналитику ставит владелец продукта или проектный менеджер. Например, разработать и внедрить какую-то модель на производстве. Владелец продукта оценивает сложность задачи и собирает необходимую для решения команду: дата-сайентист, фронтенд- и бэкенд-разработчики, дизайнер и так далее. Специалистов каждой специальности может быть несколько, а может и ни одного, в зависимости от задачи и предполагаемого решения. 

Расскажу, как мы в СИБУРе строим модель. Допустим, мы хотим предсказать факт брака детали по данным с датчиков на производстве.

  1. Первый этап — сбор данных. Аналитик готовит данные для анализа: выгружает из различных источников, обрабатывает пропуски в данных (значения, которые должны быть, но отсутствуют). На выходе получается таблица.
  2. Второй этап — предварительный анализ. Бывает полезно нарисовать разные графики и внимательно их изучить. В шутку некоторые аналитики называют это методом «пристального взгляда». Это может дать интересные соображения, помочь выявить странности и много чего еще, что поможет в решении задачи.
  3. Третий этап — построение признакового описания. Поясню, что это. У нас уже есть таблица с данными от датчиков, но в большинстве случаев этого мало. Необходимо самостоятельно рассчитать некоторые величины, которые могут помочь классифицировать деталь как бракованную. 

Например, может быть недостаточно измерить температуру в разных точках детали датчиками. Есть смысл рассчитать среднее арифметическое по всем этим датчикам, а также максимальную, минимальную температуру, разброс температур и много чего еще. 

Таким образом, рассчитывая и добавляя новые величины, мы расширяем признаковое описание нашей детали. Именно это описание (набор чисел для каждой детали) мы используем для построения модели. В нашем примере моделью будет являться некоторый алгоритм, который пытается восстановить зависимость между признаковым описанием детали и ответом (есть брак или нет).

В итоге модель обычно представляет из себя код, который может прочитать данные (например, из таблицы Excel или из базы данных), построить предсказания и записать результат (опять-таки в таблицу или базу данных).

Но в таком виде модель еще нельзя считать законченной. Модель должна быть внедрена и работать у заказчика.

Если говорить о конкретных проектах, в которых я принимал участие в СИБУРе, то первой была задача разработки модели для производства изобутилена, которая должна была предсказывать коксование. На решетках реактора образуются углеродные отложения, которые могут решетки повредить. 

Помимо самой модели, необходимо было сделать визуализацию предсказаний, которая должна обновляться в реальном времени после каждого пересчета предсказаний, а также реализовать регулярную загрузку актуальных данных в базу для расчета предсказаний. Этой задачей я занимался один, при этом периодически пользовался помощью коллег в некоторых вопросах, связанных с производственной системой хранения данных.

В этом проекте я выступаю уже больше как архитектор и разработчик фреймворка, отвечающего за все вычисления. В то время как мой коллега, тоже аналитик данных, но с профильным химическим образованием, больше решает задачи моделирования, в том числе с использованием химии и физики, хотя это разделение обязанностей весьма условно. Также в этом проекте участвуют фронтенд-разработчики, так как визуальная часть нашего решения достаточно сложна.

Подборка хороших курсов

  • Практический курс по машинному обучению с менторской поддержкой
  • Курс содержит полный обзор современных методов машинного обучения от простых моделей до работы с нейросетями и Big Data от опытного практика области
  • Специализация Яндекса и МФТИ на Coursera на русском языке
  • Полное введение в data science и машинное обучение на базе Python
  • Теорию можно смотреть бесплатно, задания и сертификат — платные
  • Интерактивное пошаговое изучение Data Science с фокусом на Python
  • Обучение через практику: с самого начала работа с реальными данными и кодом
  • 3 направления на выбор: Data Scientist, Data Analyst или Data Engineer
  • Интерактивный онлайн-курс по Data Science с фокусом на R
  • 66 курсов по машинному обучению, анализу данных и статистике
  • Курс построен на решении практических задач

«Специализация Аналитик Данных»

  • Специализация включает сквозной курс и тренажёры по инструментам для анализа данных.
  • Срок обучения: 6 месяцев
  • Онлайн-программа профессиональной переподготовки от Института биоинформатики и Санкт-Петербургского Академического университета РАН, не требующая специальной подготовки
  • Срок обучения: 1 год. С лета 2017 — ускоренная программа (полгода)
  • Стоимость: 1999 рублей в месяц

Курс по математике для Data Science

Курс содержит много практики, которая не ограничивается решением классических уравнений и абстрактных заданий.

Основы статистики

Бесплатное и ясное введение в математическую статистику для всех

  • Легендарный курс основателя Coursera и одного из лучших специалистов по искусственному интеллекту Эндрю Ын (Andrew Ng)
  • Этот курс можно считать индустриальным стандартом по введению в машинное обучение
  • Добрый человек “перевел” задания на Python (в оригинале нужно все делать на Octave)
  • Курс от NVIDIA и SkillFactrory
  • Комплексный курс по глубокому обучению на Python для начинающих
  • Видеозаписи занятий легендарной Школы анализа данных Яндекса
  • Курсы: машинное обучение, алгоритмы и структуры данных, параллельные вычисления, дискретный анализ и теория вероятности и др.

“10 онлайн-курсов по машинному обучению”

Подборка удаленных образовательных программ, составленная проектом “Теплица социальных технологий”

  • Любопытное введение в статистику на примере … котиков
  • Вы получите знания об основах описательной статистики, дисперсионном и корреляционном анализе
  • Фишка курса — наглядность (опять же картинки с котиками)
  • Учит извлекать данные из разных файлов, баз данных и API
  • Преобразовывать данные для удобного анализа
  • Интерпретировать и визуализировать результаты анализа

Курс по Python для анализа данных

Практический курс по Python для аналитиков с менторской поддержкой.

  • Курс от Высшей школы экономики
  • Онлайн-курс по самому популярному языку программирования для data scientist’ов